Reducing the precision of model weights can make deep neural networks run faster in less GPU memory, while preserving model accuracy. If ever there were a salient example of a counter-intuitive ...
Model quantization bridges the gap between the computational limitations of edge devices and the demands for highly accurate models and real-time intelligent applications. The convergence of ...
The general definition of quantization states that it is the process of mapping continuous infinite values to a smaller set of discrete finite values. In this blog, we will talk about quantization in ...
Results that may be inaccessible to you are currently showing.
Hide inaccessible results