Background Early graft failure within 90 postoperative days is the leading cause of mortality after heart transplantation. Existing risk scores, based on linear regression, often struggle to capture ...
A machine learning model incorporating functional assessments predicts one-year mortality in older patients with HF and improves risk stratification beyond established scores. Functional status at ...
This model was trained and tested on a 70%/30% split (train/test result cohort), achieving an area under the receiver operator curve on the test set of 0.866 (95% CI, 0.857 to 0.875). Assigning a ...
Machine learning models accurately predict survival after surgery for upper tract urothelial cancer, supporting personalised follow up and adjuvant treatment decisions.